DNA Repair Enzyme Signature reveals subtypes of responses to targeted therapies in melanoma cell lines

www.lxrepair.com
Sylvie Sauvaigo1, Manel Benkhiat1, Florian Braisaz2, Florence de Fraipont2, Caroline Aspord3, Stéphane Mouret1, Joël Plumas1, Fanny Bouquet1, Marie-Thérèse Leccia1,2

Introduction - Objectives
Melanoma is classified according to mutations in specific genes. About 50% of melanoma carry activating mutation in the BRAF or NRAS genes. BRAF/MEK inhibitors elicit a transient effective response but resistance rapidly develops through various pathway activating mechanisms.

Because kinases belong to a complex network of interacting proteins and enzymes, regulated by post-translational modifications, the functional significance of the mutations remains uncertain. UV irradiation which is the major risk factor for melanoma affects DNA repair pathways. Notably, enzymatic DNA Repair mechanisms are regulated by the MAPK/PI3K/AKT signaling pathway.

We hypothesized that effective inhibition of the MAPK pathway should translate into modifications of DNA Repair capacities. Inversely paradoxical activation of the signaling network could also be reflected at the DNA Repair level. Consequently measurement of DNA Repair capacities could be used to test how cells respond to targeted therapies.

To gain insights into that hypothesis and to further explore the relationship between DNA Repair capacities and melanoma, we monitored simultaneously the activity level of several major DNA Repair pathways before and after treatment of melanoma cell lines with BRAF and MEK inhibitors, alone and in combination.

Materials and Method

- **Cell treatment conditions**
 - **Melanoma cells (ATCC)**
 - Vemu (V)
 - Cobi (C)
 - Cobi+ Vemu (CV)
 - **DNA Repair Enzyme Signature**
 - Triplicates were prepared for each conditions and tested in duplicate on the microarray.
 - **ExSy-SPOT functional assay**
 - Repair pathway investigated:
 - Base Excision Repair (BER), Nucleotide Excision Repair (NER)
 - Oxidative damage (8oxoG, Glycols) (BER)
 - Alkylated bases (BER)
 - Abasic sites (BER)

- **Assay Workflow**
 - ExSy-SPOT functional assay
 - Assay on Biochip
 - Normalized data (mean:0; SD:1) – Non Treated (NT), C, V, CV

Results

- **Results by cell line (T/NT) (some examples)**
 - FI (T/NT) < 1:
 - **FI (T/NT) > 1:**
 - NRAS > BRAF
 - WT > BRAF
- **Kruskal-Wallis test – All data**
 - **NRAS > BRAF**
 - **WT > BRAF**
 - **All repair pathways except Photoproducts and Glycols p<0.05**
- **Repair profile of each cell line – Impact of CV treatments**

Conclusion
BRAF mutations and NRAS mutations affect the DNA Repair signature (BER-NER) demonstrating a functional link between the signaling pathways and the DNA Repair pathways.

- **WT cells:** CV induced an unexpected increase of CHL-1 repair activities possibly reflecting a paradoxical activation of the signaling pathways and potential toxicity.
- **NRAS cells:** Treatment drastically decreased repair activities of one NRAS cell line (M22), revealing an effective functional impact on this cell line only.
- **BRAF cells:** 3 BRAF cells categories were distinguished according to the treatment effects on DNA Repair (down – moderate – up regulation).

Drug efficiency is normally associated with down regulation of the signaling pathways, which we believe is translated at the DNA Repair level. Consequently we propose to use the DNA Repair Signature as a predictive biomarker of drug effect.

This fast assay is adapted to profiling clinical samples (tumors, lymph nodes) and characterizing drug efficiency.

Materials and Method
- **Materials and Method**
 - **Melanoma cells (ATCC)**
 - Vemu (V)
 - Cobi (C)
 - Cobi+ Vemu (CV)
 - **Cell extracts**
 - **Functional DNA Repair assay on biochip**
 - **DNA Repair Enzyme Signature**
 - Triplicates were prepared for each conditions and tested in duplicate on the microarray.
 - **ExSy-SPOT functional assay**
 - Repair pathway investigated:
 - Base Excision Repair (BER), Nucleotide Excision Repair (NER)
 - Oxidative damage (8oxoG, Glycols) (BER)
 - Alkylated bases (BER)
 - Abasic sites (BER)

Results
- **Results by cell line (T/NT) (some examples)**
 - FI (T/NT) < 1:
 - **FI (T/NT) > 1:**
 - NRAS > BRAF
 - WT > BRAF
- **Kruskal-Wallis test – All data**
 - **NRAS > BRAF**
 - **WT > BRAF**
 - **All repair pathways except Photoproducts and Glycols p<0.05**
- **Repair profile of each cell line – Impact of CV treatments**

Conclusion
BRAF mutations and NRAS mutations affect the DNA Repair signature (BER-NER) demonstrating a functional link between the signaling pathways and the DNA Repair pathways.

- **WT cells:** CV induced an unexpected increase of CHL-1 repair activities possibly reflecting a paradoxical activation of the signaling pathways and potential toxicity.
- **NRAS cells:** Treatment drastically decreased repair activities of one NRAS cell line (M22), revealing an effective functional impact on this cell line only.
- **BRAF cells:** 3 BRAF cells categories were distinguished according to the treatment effects on DNA Repair (down – moderate – up regulation).

Drug efficiency is normally associated with down regulation of the signaling pathways, which we believe is translated at the DNA Repair level. Consequently we propose to use the DNA Repair Signature as a predictive biomarker of drug effect.

This fast assay is adapted to profiling clinical samples (tumors, lymph nodes) and characterizing drug efficiency.

Materials and Method
- **Materials and Method**
 - **Melanoma cells (ATCC)**
 - Vemu (V)
 - Cobi (C)
 - Cobi+ Vemu (CV)
 - **Cell extracts**
 - **Functional DNA Repair assay on biochip**
 - **DNA Repair Enzyme Signature**
 - Triplicates were prepared for each conditions and tested in duplicate on the microarray.
 - **ExSy-SPOT functional assay**
 - Repair pathway investigated:
 - Base Excision Repair (BER), Nucleotide Excision Repair (NER)
 - Oxidative damage (8oxoG, Glycols) (BER)
 - Alkylated bases (BER)
 - Abasic sites (BER)

Results
- **Results by cell line (T/NT) (some examples)**
 - FI (T/NT) < 1:
 - **FI (T/NT) > 1:**
 - NRAS > BRAF
 - WT > BRAF
- **Kruskal-Wallis test – All data**
 - **NRAS > BRAF**
 - **WT > BRAF**
 - **All repair pathways except Photoproducts and Glycols p<0.05**
- **Repair profile of each cell line – Impact of CV treatments**

Conclusion
BRAF mutations and NRAS mutations affect the DNA Repair signature (BER-NER) demonstrating a functional link between the signaling pathways and the DNA Repair pathways.

- **WT cells:** CV induced an unexpected increase of CHL-1 repair activities possibly reflecting a paradoxical activation of the signaling pathways and potential toxicity.
- **NRAS cells:** Treatment drastically decreased repair activities of one NRAS cell line (M22), revealing an effective functional impact on this cell line only.
- **BRAF cells:** 3 BRAF cells categories were distinguished according to the treatment effects on DNA Repair (down – moderate – up regulation).

Drug efficiency is normally associated with down regulation of the signaling pathways, which we believe is translated at the DNA Repair level. Consequently we propose to use the DNA Repair Signature as a predictive biomarker of drug effect.

This fast assay is adapted to profiling clinical samples (tumors, lymph nodes) and characterizing drug efficiency.